Source code for plotting.plotting

"""Misc. plotting routines for Cloudnet products."""

import os.path
import re
import textwrap
from dataclasses import dataclass
from datetime import date
from typing import Any

import matplotlib.pyplot as plt
import netCDF4
import numpy as np
from matplotlib import rcParams
from matplotlib.axes import Axes
from matplotlib.colorbar import Colorbar
from matplotlib.colors import ListedColormap
from matplotlib.pyplot import Figure
from matplotlib.ticker import AutoMinorLocator
from matplotlib.transforms import Affine2D, Bbox
from mpl_toolkits.axes_grid1 import make_axes_locatable
from numpy import ma, ndarray
from scipy.ndimage import uniform_filter

from cloudnetpy import constants as con
from cloudnetpy.categorize.atmos_utils import calc_altitude
from cloudnetpy.exceptions import PlottingError
from cloudnetpy.instruments.ceilometer import calc_sigma_units
from cloudnetpy.plotting.plot_meta import ATTRIBUTES, PlotMeta


[docs] @dataclass class PlotParameters: """Class representing the parameters for plotting. Attributes: dpi: The resolution of the plot in dots per inch. max_y: Maximum y-axis value (km) in 2D time / height plots. title: Whether to display the title of the plot. subtitle: Whether to display the subtitle of the plot. mark_data_gaps: Whether to mark data gaps in the plot. grid: Whether to display grid lines in the plot. edge_tick_labels: Whether to display tick labels on the edges of the plot. show_sources: Whether to display the sources of plotted data (i.e. instruments and model). footer_text: The text to display in the footer of the plot. plot_meta: Additional metadata for the plot. raise_on_empty: Whether to raise an error if no data is found for a plotted variable. minor_ticks: Whether to display minor ticks on the x-axis. plot_above_ground: Whether to plot above ground instead of above mean sea level. """ dpi: float = 120 max_y: int = 12 title: bool = True subtitle: bool = True mark_data_gaps: bool = True grid: bool = False edge_tick_labels: bool = False show_sources: bool = False footer_text: str | None = None plot_meta: PlotMeta | None = None raise_on_empty: bool = False minor_ticks: bool = False plot_above_ground: bool = False
[docs] class Dimensions: """Dimensions of a generated figure in pixels. Elements such as the figure title, labels, colorbar and legend are excluded from the margins. Attributes: width (int): Figure width in pixels. height (int): Figure height in pixels. margin_top (int): Space between top edge of image and plotted data in pixels. margin_right (int): Space between right edge of image and plotted data in pixels. margin_bottom (int): Space between bottom edge of image and plotted data in pixels. margin_left (int): Space between left edge of image and plotted data in pixels. """ def __init__(self, fig, axes, pad_inches: float | None = None): if pad_inches is None: pad_inches = rcParams["savefig.pad_inches"] tightbbox = ( fig.get_tightbbox(fig.canvas.get_renderer()) .padded(pad_inches) .transformed(Affine2D().scale(fig.dpi)) ) self.width = int(tightbbox.width) self.height = int(tightbbox.height) x0, y0, x1, y1 = ( Bbox.union([ax.get_window_extent() for ax in axes]) .translated(-tightbbox.x0, -tightbbox.y0) .extents ) self.margin_top = int(self.height - round(y1)) self.margin_right = int(self.width - round(x1) - 1) self.margin_bottom = int(round(y0) - 1) self.margin_left = int(round(x0))
class FigureData: def __init__( self, file: netCDF4.Dataset, requested_variables: list[str], options: PlotParameters, ): self.file = file self.variables, self.indices = self._get_valid_variables_and_indices( requested_variables ) self.options = options self.height = self._get_height() self.time = self.file.variables["time"][:] self.time_including_gaps = np.array([]) def initialize_figure(self) -> tuple[Figure, list[Axes]]: n_subplots = len(self) fig, axes = plt.subplots( n_subplots, 1, figsize=(16, 4 + (n_subplots - 1) * 4.8), dpi=self.options.dpi, sharex=True, ) fig.subplots_adjust(left=0.06, right=0.73) axes_list = [axes] if isinstance(axes, Axes) else axes.tolist() return fig, axes_list def add_subtitle(self, fig: Figure) -> None: fig.suptitle( self._get_subtitle_text(), fontsize=13, y=0.885, x=0.07, horizontalalignment="left", verticalalignment="bottom", ) def _get_subtitle_text(self) -> str: measurement_date = date( int(self.file.year), int(self.file.month), int(self.file.day) ) site_name = self.file.location.replace("-", " ") return f"{site_name}, {measurement_date.strftime('%d %b %Y').lstrip('0')}" def _get_valid_variables_and_indices( self, requested_variables: list[str] ) -> tuple[list[netCDF4.Variable], list[int | None]]: valid_variables = [] variable_indices = [] for variable_name in requested_variables: if variable_name.startswith(("tb_", "irt_")): parts = variable_name.split("_") extracted_name = parts[0] extracted_ind = int(parts[1]) else: extracted_name = variable_name extracted_ind = None if extracted_name in self.file.variables: valid_variables.append(self.file.variables[extracted_name]) variable_indices.append(extracted_ind) if not valid_variables: msg = f"None of the variables {requested_variables} found in the file." raise PlottingError(msg) return valid_variables, variable_indices def _get_height(self) -> ndarray | None: m2km = 1e-3 m2mm = 1e3 file_type = getattr(self.file, "cloudnet_file_type", "") if file_type == "model": height = ma.mean(self.file.variables["height"][:], axis=0) # height AGL if not self.options.plot_above_ground: site_alt = self._calc_ground_altitude() height += site_alt return height * m2km if "height" in self.file.variables: height = self.file.variables["height"][:] # height AMSL if self.options.plot_above_ground: if "altitude" not in self.file.variables: msg = "No altitude information in the file." raise ValueError(msg) height -= self.file.variables["altitude"][:] return height * m2km if "range" in self.file.variables: return self.file.variables["range"][:] * m2km if "diameter" in self.file.variables: return self.file.variables["diameter"][:] * m2mm return None def _calc_ground_altitude(self) -> float: if ( "sfc_geopotential" in self.file.variables and "gdas1" not in self.file.source.lower() # uncertain unit in gdas1 ): return np.mean(self.file.variables["sfc_geopotential"][:]) / con.G pressure = ma.mean(self.file.variables["pressure"][:, 0]) temperature = ma.mean(self.file.variables["temperature"][:, 0]) return calc_altitude(temperature, pressure) def is_mwrpy_product(self) -> bool: cloudnet_file_type = getattr(self.file, "cloudnet_file_type", "") return cloudnet_file_type in ("mwr-single", "mwr-multi") def __len__(self) -> int: return len(self.variables) class SubPlot: def __init__( self, ax: Axes, variable: netCDF4.Variable, options: PlotParameters, file_type: str | None, ): self.ax = ax self.variable = variable self.options = options self.file_type = file_type self.plot_meta = self._read_plot_meta() def set_xax(self) -> None: resolution = 4 x_tick_labels = [ f"{int(i):02d}:00" if (24 >= i >= 0 if self.options.edge_tick_labels else 24 > i > 0) else "" for i in np.arange(0, 24.01, resolution) ] self.ax.set_xticks(np.arange(0, 25, resolution, dtype=int)) self.ax.set_xticklabels(x_tick_labels, fontsize=12) if self.options.minor_ticks: self.ax.xaxis.set_minor_locator(AutoMinorLocator(4)) self.ax.tick_params(which="minor", length=2.5) self.ax.set_xlim(0, 24) def set_yax( self, ylabel: str | None = None, y_limits: tuple[float, float] | None = None, ) -> None: height_str = ( "Height (km AGL)" if self.options.plot_above_ground else "Height (km AMSL)" ) label = ylabel if ylabel is not None else height_str self.ax.set_ylabel(label, fontsize=13) if y_limits is not None: self.ax.set_ylim(*y_limits) def add_title(self, ind: int | None) -> None: title = self.variable.long_name if self.variable.name == "tb" and ind is not None: title += f" (channel {ind + 1})" self.ax.set_title(title, fontsize=14) def add_grid(self) -> None: zorder = _get_zorder("grid") self.ax.xaxis.set_minor_locator(AutoMinorLocator(4)) self.ax.grid(which="major", axis="x", color="k", lw=0.1, zorder=zorder) self.ax.grid(which="minor", axis="x", lw=0.1, color="k", ls=":", zorder=zorder) self.ax.grid(which="major", axis="y", lw=0.1, color="k", ls=":", zorder=zorder) def add_sources(self, figure_data: FigureData) -> None: source = getattr(self.variable, "source", None) or ( figure_data.file.source if "source" in figure_data.file.ncattrs() else None ) if source is not None: source_word = "sources" if "\n" in source else "source" text = f"Data {source_word}:\n{source}" self.ax.text( 0.012, 0.96, text, ha="left", va="top", fontsize=7, transform=self.ax.transAxes, bbox={ "facecolor": "white", "alpha": 0.8, "edgecolor": "grey", "boxstyle": "round", "linewidth": 0.5, }, ) def set_xlabel(self) -> None: self.ax.set_xlabel("Time (UTC)", fontsize=13) def show_footer(self, fig: Figure, ax: Axes) -> None: if isinstance(self.options.footer_text, str): n = 50 if len(self.options.footer_text) > n: wrapped_text = textwrap.fill(self.options.footer_text, n) self.options.footer_text = "\n".join(wrapped_text.splitlines()) n_lines = self.options.footer_text.count("\n") + 1 y0 = ax.get_position().y0 y1 = ax.get_position().y1 y = (y1 - y0) * (n_lines * 0.06 + 0.1) fig.text( 0.06, y0 - y, self.options.footer_text, fontsize=11, ha="left", va="bottom", ) def _read_plot_meta(self) -> PlotMeta: if self.options.plot_meta is not None: plot_meta = self.options.plot_meta else: fallback = ATTRIBUTES["fallback"].get(self.variable.name, PlotMeta()) file_attributes = ATTRIBUTES.get(self.file_type or "", {}) plot_meta = file_attributes.get(self.variable.name, fallback) if plot_meta.clabel is None: plot_meta = plot_meta._replace(clabel=_reformat_units(self.variable.units)) return plot_meta class Plot: def __init__(self, sub_plot: SubPlot): self.sub_plot = sub_plot self._data = sub_plot.variable[:] self._data_orig = self._data.copy() self._plot_meta = sub_plot.plot_meta self._is_log = sub_plot.plot_meta.log_scale self._ax = sub_plot.ax def _convert_units(self) -> str: multiply, add = "multiply", "add" units_conversion = { "rainfall_rate": (multiply, 3600000, "mm h$^{-1}$"), "snowfall_rate": (multiply, 3600000, "mm h$^{-1}$"), "air_pressure": (multiply, 0.01, "hPa"), "relative_humidity": (multiply, 100, "%"), "rainfall_amount": (multiply, 1000, "mm"), "air_temperature": (add, -273.15, "\u00b0C"), "r_accum_RT": (multiply, 1000, "mm"), "r_accum_NRT": (multiply, 1000, "mm"), } conversion_method, conversion, units = units_conversion.get( self.sub_plot.variable.name, (multiply, 1, None) ) if conversion_method == multiply: self._data *= conversion self._data_orig *= conversion elif conversion_method == add: self._data += conversion self._data_orig += conversion if units is not None: self._plot_meta = self._plot_meta._replace(clabel=units) return units units = getattr(self.sub_plot.variable, "units", "") return _reformat_units(units) def _get_y_limits(self) -> tuple[float, float]: return 0, self.sub_plot.options.max_y def _init_colorbar(self, plot) -> Colorbar: divider = make_axes_locatable(self._ax) cax = divider.append_axes("right", size="1%", pad=0.25) return plt.colorbar(plot, fraction=1.0, ax=self._ax, cax=cax) def _fill_between_data_gaps(self, figure_data: FigureData) -> None: gap_times = list(set(figure_data.time_including_gaps) - set(figure_data.time)) gap_times.sort() batches = [gap_times[i : i + 2] for i in range(0, len(gap_times), 2)] for batch in batches: self._ax.fill_between( batch, *self._get_y_limits(), hatch="//", facecolor="whitesmoke", edgecolor="lightgrey", label="_nolegend_", zorder=_get_zorder("data_gap"), ) def _mark_gaps(self, figure_data: FigureData) -> None: time = figure_data.time data = self._data if time[0] < 0 or time[-1] > 24: msg = "Time values outside the range 0-24." raise ValueError(msg) max_gap_fraction_hour = _get_max_gap_in_minutes(figure_data) / 60 if getattr(figure_data.file, "cloudnet_file_type", "") == "model": time, data = screen_completely_masked_profiles(time, data) gap_indices = np.where(np.diff(time) > max_gap_fraction_hour)[0] if not ma.is_masked(data): mask_new = np.zeros(data.shape) elif ma.all(data.mask) is ma.masked: mask_new = np.ones(data.shape) else: mask_new = np.copy(data.mask) data_new = ma.copy(data) time_new = np.copy(time) if self._data.ndim == 2: temp_array = np.zeros((2, data.shape[1])) temp_mask = np.ones((2, data.shape[1])) else: temp_array = np.zeros(2) temp_mask = np.ones(2) time_delta = 0.001 for ind in np.sort(gap_indices)[::-1]: ind_gap = ind + 1 data_new = np.insert(data_new, ind_gap, temp_array, axis=0) mask_new = np.insert(mask_new, ind_gap, temp_mask, axis=0) time_new = np.insert(time_new, ind_gap, time[ind_gap] - time_delta) time_new = np.insert(time_new, ind_gap, time[ind_gap - 1] + time_delta) if (time[0] - 0) > max_gap_fraction_hour: data_new = np.insert(data_new, 0, temp_array, axis=0) mask_new = np.insert(mask_new, 0, temp_mask, axis=0) time_new = np.insert(time_new, 0, time[0] - time_delta) time_new = np.insert(time_new, 0, time_delta) if (24 - time[-1]) > max_gap_fraction_hour: ind_gap = mask_new.shape[0] data_new = np.insert(data_new, ind_gap, temp_array, axis=0) mask_new = np.insert(mask_new, ind_gap, temp_mask, axis=0) time_new = np.insert(time_new, ind_gap, 24 - time_delta) time_new = np.insert(time_new, ind_gap, time[-1] + time_delta) data_new.mask = mask_new self._data = data_new figure_data.time_including_gaps = time_new def _read_flagged_data(self, figure_data: FigureData) -> ndarray: flag_names = [ f"{self.sub_plot.variable.name}_quality_flag", "temperature_quality_flag", ] if self.sub_plot.variable.name != "irt": flag_names.append("quality_flag") for flag_name in flag_names: if flag_name in figure_data.file.variables: return figure_data.file.variables[flag_name][:] > 0 return np.array([]) class Plot2D(Plot): def plot(self, figure_data: FigureData): self._convert_units() self._mark_gaps(figure_data) if self.sub_plot.variable.name == "cloud_fraction": self._data[self._data == 0] = ma.masked if any( key in self.sub_plot.variable.name for key in ("status", "classification") ): self._plot_segment_data(figure_data) else: self._plot_mesh_data(figure_data) if figure_data.options.mark_data_gaps: self._fill_between_data_gaps(figure_data) if figure_data.is_mwrpy_product(): self._fill_flagged_data(figure_data) def _fill_flagged_data(self, figure_data: FigureData) -> None: flags = self._read_flagged_data(figure_data) batches = find_batches_of_ones(flags) for batch in batches: if batch[0] == batch[1]: continue time_batch = figure_data.time[batch[0]], figure_data.time[batch[1]] self._ax.fill_between( time_batch, *self._get_y_limits(), facecolor="white", alpha=0.7, label="_nolegend_", zorder=_get_zorder("flags"), ) def _plot_segment_data(self, figure_data: FigureData) -> None: def _hide_segments() -> tuple[list, list]: if self._plot_meta.clabel is None: msg = "Missing clabel" raise ValueError(msg) labels = [x[0] for x in self._plot_meta.clabel] colors = [x[1] for x in self._plot_meta.clabel] segments_to_hide = np.char.startswith(labels, "_") indices = np.where(segments_to_hide)[0] for ind in np.flip(indices): del labels[ind], colors[ind] self._data[self._data == ind] = ma.masked self._data[self._data > ind] -= 1 return colors, labels cbar, clabel = _hide_segments() alt = self._screen_data_by_max_y(figure_data) image = self._ax.pcolorfast( figure_data.time_including_gaps, alt, self._data.T[:-1, :-1], cmap=ListedColormap(cbar), vmin=-0.5, vmax=len(cbar) - 0.5, zorder=_get_zorder("data"), ) colorbar = self._init_colorbar(image) colorbar.set_ticks(np.arange(len(clabel)).tolist()) colorbar.ax.set_yticklabels(clabel, fontsize=13) def _plot_mesh_data(self, figure_data: FigureData) -> None: if self._plot_meta.plot_range is None: vmin, vmax = self._data.min(), self._data.max() else: vmin, vmax = self._plot_meta.plot_range if self._is_log: self._data, vmin, vmax = lin2log(self._data, vmin, vmax) alt = self._screen_data_by_max_y(figure_data) if (duration := self._plot_meta.time_smoothing_duration) > 0: sigma_units = calc_sigma_units( figure_data.time, alt * 1e3, sigma_minutes=duration, sigma_metres=0 ) valid_time_ind = ~np.all(self._data.mask, axis=1) smoothed_data = uniform_filter(self._data[valid_time_ind, :], sigma_units) self._data[valid_time_ind, :] = smoothed_data if self._data.mask.all() and figure_data.options.raise_on_empty: msg = "All data is masked" raise PlottingError(msg) pcolor_kwargs = { "cmap": plt.get_cmap(str(self._plot_meta.cmap)), "vmin": vmin, "vmax": vmax, "zorder": _get_zorder("data"), } image: Any if getattr(figure_data.file, "cloudnet_file_type", "") == "model": image = self._ax.pcolor( figure_data.time_including_gaps, alt, self._data.T, **pcolor_kwargs, shading="nearest", ) else: image = self._ax.pcolorfast( figure_data.time_including_gaps, alt, self._data.T[:-1, :-1], **pcolor_kwargs, ) cbar = self._init_colorbar(image) cbar.set_label(str(self._plot_meta.clabel), fontsize=13) if self._is_log: cbar.set_ticks(np.arange(vmin, vmax + 1).tolist()) tick_labels = get_log_cbar_tick_labels(vmin, vmax) cbar.ax.set_yticklabels(tick_labels) if self._plot_meta.contour: self._plot_contour( figure_data, alt, levels=np.linspace(vmin, vmax, num=10), colors="black", linewidths=0.5, ) if self.sub_plot.variable.name == "Tw": self._plot_contour( figure_data, alt, levels=np.array([con.T0]), colors="gray", linewidths=1.25, linestyles="dashed", ) def _plot_contour(self, figure_data: FigureData, alt: np.ndarray, **options): time_length = len(figure_data.time_including_gaps) step = max(1, time_length // 200) ind_time = np.arange(0, time_length, step) self._ax.contour( figure_data.time_including_gaps[ind_time], alt, self._data[ind_time, :].T, **options, zorder=_get_zorder("contour"), ) def _screen_data_by_max_y(self, figure_data: FigureData) -> ndarray: if figure_data.height is None: msg = "No height information in the file." raise ValueError(msg) if self._data.ndim < 2: msg = "Data has to be 2D." raise PlottingError(msg) alt = figure_data.height if figure_data.options.max_y is None: return alt ind = int((np.argmax(alt > figure_data.options.max_y) or len(alt)) + 1) self._data = self._data[:, :ind] return alt[:ind] class Plot1D(Plot): def plot(self, figure_data: FigureData, hacky_freq_ind: int | None = None) -> None: units = self._convert_units() self._mark_gaps(figure_data) self._ax.plot( figure_data.time_including_gaps, self._data, label="_nolegend_", **self._get_plot_options(), zorder=_get_zorder("data"), ) if self._plot_meta.moving_average: self._plot_moving_average(figure_data, hacky_freq_ind) if self._plot_meta.zero_line: self._ax.axhline(0, color="black", alpha=0.5, label="_nolegend_") self._fill_between_data_gaps(figure_data) self.sub_plot.set_yax(ylabel=units, y_limits=self._get_y_limits()) pos = self._ax.get_position() self._ax.set_position((pos.x0, pos.y0, pos.width * 0.965, pos.height)) if figure_data.is_mwrpy_product(): flags = self._read_flagged_data(figure_data) if np.any(flags): self._plot_flag_data(figure_data.time[flags], self._data_orig[flags]) self._add_legend() def plot_tb(self, figure_data: FigureData, freq_ind: int) -> None: if len(self._data.shape) != 2 or freq_ind >= self._data.shape[1]: msg = "Frequency index not found in data" raise PlottingError(msg) self._data = self._data[:, freq_ind] self._data[np.isnan(self._data)] = ma.masked if self._data.mask.all() and figure_data.options.raise_on_empty: msg = "All data is masked" raise PlottingError(msg) self._data_orig = self._data_orig[:, freq_ind] if self.sub_plot.variable.name == "tb": is_bad_zenith = self._get_bad_zenith_profiles(figure_data) self._data[is_bad_zenith] = ma.masked self._data_orig[is_bad_zenith] = ma.masked flags = self._read_flagged_data(figure_data)[:, freq_ind] flags[is_bad_zenith] = False if np.any(flags): self._plot_flag_data(figure_data.time[flags], self._data_orig[flags]) self._add_legend() self._show_frequency(figure_data, freq_ind) self.plot(figure_data, freq_ind) def _show_frequency(self, figure_data: FigureData, freq_ind: int) -> None: if self.sub_plot.variable.name == "tb": label = "Freq" value = figure_data.file.variables["frequency"][freq_ind] unit = "GHz" elif "ir_wavelength" in figure_data.file.variables: label = "WL" variable = figure_data.file.variables["ir_wavelength"] # `ir_wavelength` is scalar in old files value = variable[:] if len(variable.shape) == 0 else variable[freq_ind] value /= 1e-6 # m to μm unit = "μm" else: return self._ax.text( 0.0, -0.13, f"{label}: {value:.2f} {unit}", transform=self._ax.transAxes, fontsize=12, color="dimgrey", bbox={ "facecolor": "white", "linewidth": 0, "boxstyle": "round", }, ) def _plot_flag_data(self, time: ndarray, values: ndarray) -> None: self._ax.plot( time, values, color="salmon", marker=".", lw=0, markersize=3, zorder=_get_zorder("flags"), ) def _add_legend(self) -> None: self._ax.legend( ["Flagged data"], markerscale=3, numpoints=1, frameon=False, ) def _get_y_limits(self) -> tuple[float, float]: percent_gap = 0.05 fallback = (-percent_gap, percent_gap) if ma.all(self._data.mask): return fallback min_data = self._data.min() max_data = self._data.max() range_val = max_data - min_data gap = percent_gap * range_val min_y = min_data - gap max_y = max_data + gap if min_y == 0 and max_y == 0: return fallback return min_y, max_y def _get_plot_options(self) -> dict: default_options = { "color": "lightblue", "lw": 0, "marker": ".", "markersize": 3, } custom_options = { "tb": { "color": "lightblue", } } variable_name = self.sub_plot.variable.name if variable_name in custom_options: default_options.update(custom_options[variable_name]) return default_options def _plot_moving_average( self, figure_data: FigureData, hacky_freq_ind: int | None = None ) -> None: time = figure_data.time.copy() data = self._data_orig.copy() if figure_data.is_mwrpy_product() or self.sub_plot.variable.name in ( "tb", "irt", ): flags = self._read_flagged_data(figure_data) else: flags = np.array([]) if hacky_freq_ind is not None and np.any(flags): flags = flags[:, hacky_freq_ind] is_invalid = ma.getmaskarray(data) if np.any(flags): is_invalid |= flags is_wind_direction = self.sub_plot.variable.name == "wind_direction" if is_wind_direction: wind_speed = figure_data.file["wind_speed"] data = np.stack([wind_speed, data], axis=1) block_ind = np.where(np.diff(is_invalid))[0] + 1 valid_time_blocks = np.split(time, block_ind)[is_invalid[0] :: 2] valid_data_blocks = np.split(data, block_ind)[is_invalid[0] :: 2] for time1, data1 in zip(valid_time_blocks, valid_data_blocks, strict=False): if is_wind_direction: sma = self._calculate_average_wind_direction( data1[:, 0], data1[:, 1], time1, window=15 ) else: sma = self._calculate_moving_average(data1, time1, window=5) gap_time = _get_max_gap_in_minutes(figure_data) gaps = self._find_time_gap_indices(time1, max_gap_min=gap_time) + 1 for time2, data2 in zip( np.split(time1, gaps), np.split(sma, gaps), strict=False ): self._ax.plot( time2, data2, color="slateblue", lw=2, label="_nolegend_", zorder=_get_zorder("mean_curve"), ) @staticmethod def _get_line_width(time: ndarray) -> float: line_width = np.median(np.diff(time)) * 1000 return min(max(line_width, 0.25), 0.9) @staticmethod def _get_bad_zenith_profiles(figure_data: FigureData) -> ndarray: zenith_limit = 5 valid_pointing_status = 0 if "pointing_flag" in figure_data.file.variables: pointing_flag = figure_data.file.variables["pointing_flag"][:] zenith_angle = figure_data.file.variables["zenith_angle"][:] is_bad_zenith = np.abs(zenith_angle) > zenith_limit is_bad_pointing = pointing_flag != valid_pointing_status return is_bad_zenith | is_bad_pointing return np.zeros_like(figure_data.time, dtype=bool) @staticmethod def _find_time_gap_indices(time: ndarray, max_gap_min: float) -> ndarray: gap_decimal_hour = max_gap_min / 60 return np.where(np.diff(time) > gap_decimal_hour)[0] @staticmethod def _calculate_moving_average( data: ndarray, time: ndarray, window: float = 5 ) -> ndarray: if len(data) == 0: return np.array([]) if len(data) == 1: return data time_delta_hours = np.median(np.diff(time)) window_size = int(window / 60 / time_delta_hours) if window_size < 1: window_size = 1 if window_size % 2 == 0: window_size += 1 weights = np.repeat(1 / window_size, window_size) padded_data = np.pad(data, window_size // 2, mode="edge") return np.convolve(padded_data, weights, "valid") @classmethod def _calculate_average_wind_direction( cls, wind_speed: ndarray, wind_direction: ndarray, time: ndarray, window: float = 5, ) -> ndarray: angle = np.deg2rad(wind_direction) u = wind_speed * np.cos(angle) v = wind_speed * np.sin(angle) avg_u = cls._calculate_moving_average(u, time, window) avg_v = cls._calculate_moving_average(v, time, window) data = np.rad2deg(np.arctan2(avg_v, avg_u)) % 360 wrap = np.where(np.abs(np.diff(data)) > 300)[0] data[wrap] = np.nan return data
[docs] def generate_figure( filename: os.PathLike | str, variables: list[str], *, show: bool = True, output_filename: os.PathLike | str | None = None, options: PlotParameters | None = None, ) -> Dimensions: """Generate a figure based on the given filename and variables. Args: filename: The path to the input file. variables: A list of variable names to plot. show: Whether to display the figure. Defaults to True. output_filename: The path to save the figure. Defaults to None. options: Additional plot parameters. Defaults to None. Returns: Dimensions: Dimensions of a generated figure in pixels. """ fig = None try: if options is None: options = PlotParameters() with netCDF4.Dataset(filename) as file: figure_data = FigureData(file, variables, options) fig, axes = figure_data.initialize_figure() for ax, variable, ind in zip( axes, figure_data.variables, figure_data.indices, strict=True ): file_type = getattr(file, "cloudnet_file_type", None) subplot = SubPlot(ax, variable, options, file_type) if variable.name in ("tb", "irt") and ind is not None: Plot1D(subplot).plot_tb(figure_data, ind) elif variable.ndim == 1: Plot1D(subplot).plot(figure_data) elif variable.name in ("number_concentration", "fall_velocity"): Plot2D(subplot).plot(figure_data) subplot.set_yax(ylabel="Diameter (mm)", y_limits=(0, 10)) else: Plot2D(subplot).plot(figure_data) subplot.set_yax(y_limits=(0, figure_data.options.max_y)) subplot.set_xax() if options.title: subplot.add_title(ind) if options.grid: subplot.add_grid() if options.show_sources: subplot.add_sources(figure_data) if options.subtitle and variable == figure_data.variables[-1]: figure_data.add_subtitle(fig) subplot.set_xlabel() if options.footer_text is not None: subplot.show_footer(fig, ax) if output_filename: plt.savefig(output_filename, bbox_inches="tight") if show: plt.show() return Dimensions(fig, axes) finally: if fig: plt.close(fig)
def lin2log(*args) -> list: return [ma.log10(x) for x in args] def get_log_cbar_tick_labels(value_min: float, value_max: float) -> list[str]: return [f"10$^{{{int(i)}}}$" for i in np.arange(value_min, value_max + 1)] def _reformat_units(unit: str) -> str: if unit == "1": return "" return re.sub(r"(-\d+)", r"$^{\1}$", unit).replace("mu ", "$\\mu$") def _get_max_gap_in_minutes(figure_data: FigureData) -> float: source = getattr(figure_data.file, "source", "").lower() file_type = getattr(figure_data.file, "cloudnet_file_type", "") max_allowed_gap = { "model": 181 if "gdas1" in source or "ecmwf open" in source else 61, "mwr-multi": 35, "weather-station": 12, "doppler-lidar-wind": 75, "doppler-lidar": 75, "radar": 5, } return max_allowed_gap.get(file_type, 10) def _get_zorder(name: str) -> int: zorder = { "contour": 2, "data_gap": 2, "flags": 2, } return zorder.get(name, -1) def find_batches_of_ones(array: ndarray) -> list[tuple[int, int]]: """Find batches of ones in a binary array.""" starts = np.where(np.diff(np.hstack(([0], array))) == 1)[0] stops = np.where(np.diff(np.hstack((array, [0]))) == -1)[0] return list(zip(starts, stops, strict=True)) def screen_completely_masked_profiles(time: ndarray, data: ma.MaskedArray) -> tuple: if not ma.is_masked(data): return time, data good_ind = np.where(np.any(~data.mask, axis=1))[0] if len(good_ind) == 0: msg = "All values masked in the file." raise PlottingError(msg) good_ind = np.append(good_ind, good_ind[-1] + 1) good_ind = np.clip(good_ind, 0, len(time) - 1) return time[good_ind], data[good_ind, :] def plot_2d( data: ma.MaskedArray, cmap: str = "viridis", ncolors: int = 50, clim: tuple | None = None, ylim: tuple | None = None, xlim: tuple | None = None, *, cbar: bool = True, ) -> None: """Simple plot of 2d variable.""" plt.close() if cbar: color_map = plt.get_cmap(cmap, ncolors) plt.imshow( ma.masked_equal(data, 0).T, aspect="auto", origin="lower", cmap=color_map, ) plt.colorbar() else: plt.imshow(ma.masked_equal(data, 0).T, aspect="auto", origin="lower") if clim: plt.clim(clim[0], clim[1]) if ylim is not None: plt.ylim(ylim) if xlim is not None: plt.xlim(xlim) plt.show()